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Abstract

Simultaneous heat and mass transfer between parallel plates are analyzed taking into account the Soret and Dufour

effects. Both heat and mass transport are examined considering conduction in the axial and transverse directions plus

longitudinal advection. The equations differ from the classical heat and mass transfer ones in considering the effect of

the temperature gradient upon the mass flux, and conversely the effect of the concentration gradient upon heat flux, in

accordance with the dictates of thermodynamics of irreversible processes. The special problems solved evaluate the

effect of an imposed temperature difference between the confining walls upon the solute concentration distribution of a

multisolute which diffuses against the concentration gradient forced by the prevailing temperature gradient. Details and

numerical results are presented only for binary solutions.

The asymptotic concentration difference, for a specified temperature difference, depends on the Soret and

Dufour coefficients. The approach to the asymptotes is determined by the complete solution of the governing equa-

tions. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Simultaneous heat, mass, and momentum transport

are governed by constitutive equations determining the

diffusive fluxes as functions of the gradients of temper-

ature, concentration, and velocity. As separate laws

these are due to Fourier, Fick, and Newton. If the fluid

obeys these three laws, then aside from the temperature

and composition dependence of physical properties, the

energy and mass balance equations are independent and

the solution of heat and mass transfer problems can be

obtained independently of each other.

Interference between heat and mass transport, at the

level of constitutive equations, has been observed, and

the linear theory of non-equilibrium thermodynamics

has been formulated as a constitutive theory capable of

fully expressing the dependence of all fluxes as a function

of all thermodynamic forces. In special, in a multi-

component fluid the temperature and concentration

gradients interfere in the constitutive equations for the

heat and mass flux of all components. Thermal diffusion,

i.e. the flow of matter caused by a temperature gradient,

is called the Soret [1] effect, and its reciprocal, i.e. the

flow of heat caused by concentration gradients, is named

after Dufour [2]. The two effects occur simultaneously,

non-equilibrium of either temperature or concentrations

causes both heat and mass transport. Thermal diffusion

is of importance in achieving difficult purifications, such

as isomeric substances of various types, including iso-

topic elements. It is of additional importance in models

for the prediction of the composition profile of oil fields.

The linear theory of irreversible thermodynamics was

consistently set by Meixner [3] in 1941, and later revised

by Prigogine [4], both resting on a local equilibrium

assumption. The text by De Groot [5] presents the the-

ory in its full generality. The dissipation of energy takes

the form of a sum of products of conjugate forces and
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fluxes associated to the problem under consideration.

The fluxes are expressed as linear functions of all forces,

as constitutive equations, subjected to the reciprocal

relations of Onsager and to the exclusion theorem of

Curie. These generalize Fourier and Fick laws, and lead

to coupled field equations for the temperature and spe-

cies concentrations. A review of the linear theory of

irreversible phenomena, especially applicable to the

coupled heat and mass transfer, was recently presented

by Demirel and Sandler [6].

The Graetz [7] problem was originally posed for the

description of heat transfer to a pure fluid in instances

where the axial conduction can be neglected. The dif-

ferential equations and, in part, the boundary conditions

apply; equally well to the description of mass transfer

problems. Mikhailov and Ozisik [8] have applied a

generalized transform method to the solution of a large

set of heat and mass transfer problems. In most of the

cases analyzed heat and mass transfer are uncoupled,

except for the presentation of the work of Luikov and

Mikhailov [9] for the description of drying processes

where the migration of moisture is caused by the tem-

perature gradient. The constitutive equations employed

describe only the Soret effect but disregard the Dufour.

Graetz problem has been extended to cover condi-

tions of low Peclet number, cases in which the axial

conduction in the fluid cannot be neglected. Silva Telles

et al. [10] have recently presented an analytical solution

to this problem, in which the flow domain and temper-

ature field extend through the whole real axis. The

method is applicable to the three main types of bound-

ary conditions, which are allowed to vary along the axial

coordinate in quite a general fashion.

A similar method is now applied to this more general

problem in which the heat flux and the diffusive mass flux

of each solute depend simultaneously on the tempera-

ture and concentration gradients. The multicomponent

fluid is admitted at x ¼ �1 with a fully developed

parabolic velocity profile to the region between parallel

plates, whose walls are held at specified temperatures,

variable along the axial coordinate. At the entrance

the fluid temperature and concentrations are uniform.

Contact with the heated walls introduces a temperature

gradient, which in turn produces mass fluxes and con-

centration gradients. The concentration gradients alter

the heat flux, and this change has effect upon the Nusselt

number. Permeable and impervious walls lead to dif-

ferent boundary conditions, which are analyzed in view

of their potential use as a separation process. The flow

configuration is depicted in Fig. 1.

The solution is based on a convenient basis for the

Hilbert space of square integrable functions of a real

variable. The construction of the solution involves a

change of the dependent variables aiming at their re-

Nomenclature

A;B;C;D constants defined in Eq. (29)

ca solute concentration

Cp specific heat

dk ; ek constants of integration

Dab diffusion coefficients

gk functions defined in Eq. (1)

H semi-distance between plates

ja mass flux of solute

k thermal conductivity

Ka mass transfer coefficient

Ns number of solutes

p function in Eq. (1)

Pe Peclet number

Pk polynomials defined in Appendix A

q heat flux

ra; sa constants of integration

S stepping constant in wall temperature de-

scription

T temperature

u dimensionless velocity profile

v (vm) velocity profile (maximum value)

x dimensionless axial coordinate

y transversal coordinate

z axial coordinate.

Greek letters

C matrix of phenomenological dimensionless

coefficients

H dimensionless temperature

a thermal diffusivity

ba dimensionless mass transfer coefficient

va dimensionless solute concentrations

cab, cqb, cah dimensionless phenomenological coeffi-

cients

g dimensionless transversal coordinate

jab entries in the inverse phenomenological co-

efficients matrix

kaq, kab phenomenological coefficients defined in

Eqs. (6) and (7)

q fluid density.

Subscripts

i; j; k;m; n; . . . refer to terms in the series expansion
a; b; . . . refer to properties of the solutes

1 refer to asymptotic solution of the differen-

tial equations.
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duction to square integrable function, accomplished by

subtraction of asymptotic solutions. For these new

variables, solutions are proposed as expansion in a series

with respect to a basis chosen in view of two important

properties. Firstly, each of the basis functions is ob-

tained by successive differentiation of a specified func-

tion, Eq. (1), and secondly each of which is orthogonal

to all but one previously determined polynomial, Eq. (2),

obtained following a general procedure explained in

Appendix A:

g0 ¼ expf�pðxÞg; gkþ1 ¼
dgk

dx
; k ¼ 0::1; ð1Þ

Z 1

�1
giðZÞPjðxÞdx ¼ dij; the Kronecker delta; ð2Þ

where pðxÞ is a polynomial of the second degree, and this
implies that Pj are polynomials of increasing degrees

starting with j ¼ 0, P0 ¼ constant. This allows the es-
tablishment of an infinite set of ordinary differential

equations for the coefficients of the solutions expansion.

Each equation depends exclusively upon the two previ-

ous ones, a fact that allows their solution in sequence,

with no recourse to approximations of any kind.

2. Analytical formulation

Consider the fully developed flow of a Newtonian

fluid between parallel plates with a parabolic velocity

profile given by Eq. (3). The fluid composition comprises

a solvent and a set of Ns solutes. It is admitted with
uniform concentrations c0a fa ¼ 1::Nsg and uniform

temperature T0. At inlet, consequently, the fluid and
confining walls are in thermodynamic equilibrium at the

temperature T0. The walls are held at specified, variable
temperatures along the axial coordinate z, TU ¼ TUðzÞ
and TL ¼ TLðzÞ.
v
vm

	 u ¼ ð1� g2Þ; g ¼ y
H
; ð3Þ

where H is the semi-gap between plates.

Mass and energy balances are assumed of the fol-

lowing forms:

qv@zca ¼ �divðjaÞ; a ¼ 1::Ns; ð4Þ

qCpv@zT ¼ �divðqÞ: ð5Þ

The mass and heat fluxes are determined by constit-

utive equations, and these should transform the balance

laws into field equations for the concentrations of the

chemical species, and for the temperature. Fick and

Fourier laws are generalized by the dictates of thermo-

dynamics of irreversible processes as linear expressions

for the fluxes as functions of the gradients of tempera-

ture and chemical potential of all solutes. The reciprocal

relations due to Onsager apply to these expressions. As

consequence of the local equilibrium hypothesis the

chemical potentials are determined as functions of temp-

erature and concentration only, and by means of these

expressions the constitutive equations can be trans-

formed into linear functions of the gradients of con-

centration and temperature. The solution possesses Ns
independent components, and Ns independent concen-
tration gradients; it is therefore permissible to write

ja ¼ �kaT gradT �
XNs
b¼1

Dab gradcb; ð6Þ

q ¼ �k gradT �
XNs
b¼1

kqb gradcb; ð7Þ

where kaT are thermal diffusion coefficients determining

the mass flux of each component generated by the tem-

perature gradient (Soret effect), Daa is the coefficient of

self-diffusion, Dab, for b 6¼ a give the coupling effects
between different chemical components. Eq. (7) expresses

heat conduction determined firstly by the thermal con-

ductivity k with the interference of the concentration
gradients giving rise to the Dufour effect, with coeffi-

cients kqa.

Gurtin and Vargas [11] have extended the theory to

incorporate non-linear expressions. As consequence of

frame indifference, and material isotropy the resulting

constitutive equations do not differ significantly from

the above, except for the possible dependence on the

symmetric part of the velocity gradient, and the possible

dependence of all coefficients on the combined invari-

ants [12,13] of the gradients present in the representation

given by Eqs. (6) and (7). In general, therefore, the co-

efficients of Eqs. (6) and (7) are determined by functions

of the temperature, composition, and of the combined

scalar products of Ns þ 1 gradients of concentration and
temperature. In the present work all coefficients are

considered constants, i.e. independent of temperature,

concentrations and independent of all gradients.

The substitution of the constitutive equations into

the mass and energy balances, Eqs. (4) and (5), yields

the desired field equations for the concentration of all

solutes, and for the temperature. The system is made

dimensionless with the use of the following variables:

Fig. 1. Geometry and main variables.
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H ¼ T � T0
DT

; va ¼
ca
c0a
; g ¼ y

H
; x ¼ z

HPe
;

Pe ¼ Hvm
a

; a ¼ k
qCp

; ð8Þ

where DT is a reference temperature difference.
The system of equations (6) and (7) accounting to

Soret and Dufour effects becomes:X
cabD

2vb þ cahD
2H ¼ ð1� g2Þ@xva ¼ u@xva; ð9ÞX

cqbD
2vb þ D2H ¼ ð1� g2Þ@xH ¼ u@xH; ð10Þ

where

cqb ¼
kqb

k
c0b
DT

; cab ¼
DabCpc0b

kc0a
; cah ¼

kaTDTCp
kc0a

ð11Þ

and

D2 ¼ @2g þ
1

Pe2
@2x ;

is the dimensionless Laplacian operator in Cartesian

coordinates.

The system of Ns þ 1 partial differential equations is
written in matrix form

c11 c12 � � � c1Ns c1h
c21 c22 � � � c2Ns c2h

..

. ..
. . .

. ..
. ..

.

cq1 cq2 � � � cqNs 1

0
BBBB@

1
CCCCA

D2v1
D2v2

..

.

D2H

0
BBBB@

1
CCCCA ¼

u@xv1
u@xv2

..

.

u@xH

0
BBBB@

1
CCCCA;

ð12Þ

comprising a matrix of dimensionless phenomenological

coefficients, C, operating on a vector with components
consisting of the Laplacian operator acting on the Ns þ 1
field variables, and yielding the vector of advective

transport. The assumption that C is non-singular, i.e.

det C 6¼ 0, is equivalent to the frequently employed as-
sumption that the system of constitutive equations (6)

and (7) can be solved for the gradients. Including this

assumption, the system of equations (12) is equivalent to

@2gv1

@2gv2

..

.

@2gH

0
BBBBBBB@

1
CCCCCCCA

¼

j11 j12 � � � j1Ns j1h

j21 j22 � � � j1Ns j1h

..

. ..
. . .

. ..
. ..

.

jq1 jq2 � � � jqNs jqh

0
BBBBBB@

1
CCCCCCA

u@xv1

u@xv2

..

.

u@xH

0
BBBBBB@

1
CCCCCCA

� 1

Pe2

@2xv1

@2xv2

..

.

@2xH

0
BBBBBB@

1
CCCCCCA
; ð13Þ

where the matrix entries are the components of inverse

of the matrix C. The coupling phenomena persist in Eqs.
(13) originating in the advective terms on the right-hand

side of Eqs. (12). Inversion of the matrix of phenome-

nological coefficients permits the isolation of the deriv-

atives of the field variables with respect to g, leaving to
the right the derivatives with respect to x.

2.1. Boundary conditions

The boundary conditions for H result from the

specification of the wall temperature on both plates:

Hðx;�1Þ ¼ HL
wðxÞ; Hðx; 1Þ ¼ HU

w ðxÞ; ð14Þ

lim
x!�1

HL
wðxÞ ¼ HU

w ðxÞ ¼ 0;

and

lim
x!1

HL
wðxÞ ¼ HL1

w ;

lim
x!1

HU
w ðxÞ ¼ HU1

w :

ð15Þ

According to the above conditions, both plates are

held at specified, variable temperatures. The left limits

for both plates are equal to the temperature of the in-

coming fluid, while the right limit for each wall attains

possibly unequal asymptotic values TU1w and T L1w . The

reference temperature difference appearing in Eq. (8)

may be set equal to TU1w � T0, in which caseHU1
w ¼ 1. In

most instances the lower plate is held at the entrance

temperature T0, i.e. H
L
w ¼ 0 for all values of x.

The boundary conditions for concentrations reflect

the asymptotic approach to the fluid composition at

admittance, and the permeability condition at both

walls, which requires the normal component of the mass

fluxes to be proportional to the difference between the

solute concentration at the wall and the concentration of

the same solute prevailing in the ambient space outside

the walls:

lim
x!�1

vaðx; gÞ ¼ 1; ð16Þ

jaðz;�1Þ � n ¼ K�
a ½caðx;�1Þ � c�a �;

jaðz; 1Þ � n ¼ Kþ
a ½caðx; 1Þ � cþa �;

ð17Þ

where Ka are mass transfer coefficients (permeabilities)

for each wall, and cþa , c
�
a are the concentrations of each

chemical species prevailing in the ambient space outside

the two walls. The case in which both mass transfer

coefficients are equal to zero is given special attention.

Selective membranes may be used letting through some

of the chemical species, but rejecting some others. In

purification system for one of the solution components,

the membrane could be chosen permeable only to that

component. In a concentration system both walls can be

impermeable to the desired solute.
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Notice that the flux condition of Eqs. (17) presents

significant differences to the classical flux condition

when there is no interference between the various effects.

Substitution of the constitutive equation (6) into Eqs.

(17) yields the same type of interference between the

various forces in action. In terms of the dimensionless

variables conditions (17) are rephrased as

cah@gH
		
g¼1 þ

X
cab@gvb

			
g¼1

¼ bþ
a ½vaðx; 1Þ � vþ

a �;

cah@gH
		
g¼�1 þ

X
cab@gvb

			
g¼�1

¼ b�
a ½vaðx;�1Þ � v�

a �;

ð18Þ

where ba ¼ Ka=ðkc0aÞ is the dimensionless mass transfer
coefficient for each wall.

2.2. Asymptotic solution

The solution method employed depends on the exis-

tence of asymptotes valid as x ! 1. They are obtained,
in the present cases, by setting to zero the derivatives

with respect to x in Eqs. (13):

@2gv
1
a ¼ 0 ) v1

a ¼ r1a g þ s1a ;

@2gH
1 ¼ 0 ) H1 ¼ d1g þ e1:

ð19Þ

The asymptotic solutions of the above equations have

coefficients of integration, which are allowed to be

functions of the axial variable, x. The asymptotic solu-

tion for temperature is given by a linear expression in g
with coefficients determined by the wall temperature

distributions

H1 ¼ 1
2
ðHU � HLÞg þ 1

2
ðHU þ HLÞ: ð20Þ

For the special case in which the lower wall temper-

ature is kept constant at T0 then

H1 ¼ HU g þ 1
2

: ð21Þ

Linear expressions hold, equally, for the asymptotic

concentration profiles whose coefficients must satisfy

Eqs. (18)

1
2
cahH

U þ
X

cabr
1
b ¼ bþ

a ½r1a þ s1a � vþ
a �;

1
2
cahH

U þ
X

cabr
1
b ¼ b�

a ½�r1a þ s1a � v�
a �:

ð22Þ

This system contains 2Ns equations for the same
number of unknowns and can, in principle, be solved.

For the case when the lower wall is impervious ðb�
b ¼ 0Þ,

and held isothermal, Eq. (22)2 can be solved to deter-

mine the ra. Once this is accomplished their values are
substituted into Eq. (22)1 to yield sa. Full details of the

solution are given only for the case in which both walls

are impermeable

X
cabr

1
b ¼ �cah

HU

2
; ð23Þ

s1a ¼ 0: ð24Þ

If both walls are impervious, the two equations (22)

become identical and independent of sa, which may be
set equal to zero.

2.3. Complete solution

The method proposed by Silva Telles et al. [10] is

used to obtain the complete solution. The modification

presented in Appendix A results in a significant im-

provement of the convergence rate. The solutions for the

temperature and concentration fields are proposed as

H ¼ HUðxÞ
2

ðg þ 1Þ þ
X1
0

#kðgÞgkðxÞ; ð25Þ

va ¼ r1a ðxÞg þ s1a ðxÞ þ
X1
0

ua
kðgÞgkðxÞ; ð26Þ

where the gk are defined in Eq. (1).

Substituting the proposed solutions into Eqs. (13)

yieldsP
@2gu

1
kgkP

@2gu
2
kgk

..

.

P
@2g#kgk

0
BBBBBBB@

1
CCCCCCCA

¼ u

j11 j12 � � � j1Ns j1h

j21 j22 � � � j1Ns j1h

..

. ..
. . .

. ..
. ..

.

jq1 jq2 � � � jqNs jqh

0
BBBBBBB@

1
CCCCCCCA

�

P
u1k�1gk þ @xðr1g þ s1ÞP
u2k�1gk þ @xðr2g þ s2Þ

..

.

P
#k�1gk þ gþ1

2
@xðhUÞ

0
BBBBBBB@

1
CCCCCCCA

� 1

Pe2

P
u1k�2gk þ @2x ðr1g þ s1ÞP
u2k�2gk þ @2x ðr2g þ s2Þ

..

.

P
#k�2gk þ gþ1

2
@2x ðh

UÞ

0
BBBBBBB@

1
CCCCCCCA
;

ð27Þ

where ua
�1 ¼ ua

�2 ¼ #�1 ¼ #�2 ¼ 0.
Multiplying each equation, successively, by each of

the polynomials with the bi-orthogonality property

generates an infinite set of ordinary differential equa-

tions for the coefficient functions ua
j and #j:
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@2gu
1
j

@2gu
2
j

..

.

@2g#j

0
BBBBBB@

1
CCCCCCA

¼ ð1� g2Þ

j11 j12 � � � j1Ns j1h

j21 j22 � � � j1Ns j1h

..

. ..
. . .

. ..
. ..

.

jq1 jq2 � � � jqNs jqh

0
BBBBB@

1
CCCCCA

�

u1j�1 þ A1jg þ B1j

u2j�1 þ A2jg þ B2j

..

.

#j�1 þ gþ1
2

Ah
j

0
BBBBBB@

1
CCCCCCA

� 1

Pe2

u1j�2 þ C1j g þ D1j

u2j�2 þ C2j g þ D2j

..

.

#j�2 þ gþ1
2

Ch
j

0
BBBBBB@

1
CCCCCCA

¼

f 1j ðgÞ
f 2j ðgÞ

..

.

f h
j ðgÞ

0
BBBBBB@

1
CCCCCCA
; ð28Þ

where the coefficients A, B, C, and D are determined by
the application of the functional

Pjð�Þ ¼
1

hj

Z 1

�1
ð�ÞHjðZÞdZ

to the terms in Eqs. (27) dependent on the boundary

conditions. They are calculated by expressions (29):

Aa
j ¼ Pjð@xr1a Þ; Ah

j ¼ Pjð@xh
UÞ;

Ba
j ¼ Pjð@xs1a Þ;

Ca
j ¼ Pjð@2x r1a Þ; Ch

j ¼ Pjð@2xh
UÞ;

Da
j ¼ Pjð@2x s1a Þ:

ð29Þ

The vector of Ns þ 1 f ’s stands for the right-hand side of
Eqs. (28). They are known functions, exclusively of g.
The set can be solved to give the coefficient functions

of g, starting with j ¼ 0. For this case the right-hand side
reduces to linear functions of that variable, multiplied by

the velocity profile. Its coefficients are determined by the

physical properties that compose C, and by the bound-
ary conditions, which determine the coefficients in Eq.

(29). They can be integrated twice leading to a polyno-

mial of the fifth degree. For j ¼ 1 the set depends on the
same variables, to which are added the coefficient

functions for j ¼ 0. The right-hand side is completely
determined, and is a polynomial of seventh degree.

Double integration yields terms of the ninth degree. In

sequence, for jP 2, the solution depends on the two

previous solutions and on the same physical parameters.

Integration results in polynomials of degree 4jþ 5.

Integration of each of Eqs. (28) introduces two ar-

bitrary constants, which must be evaluated in order to

satisfy the boundary conditions:

ua
j ¼

Z Z
f a
j dg þ raj g þ saj ¼ F a

j þ raj g þ saj ;

#j ¼
Z Z

f h
j dg þ djg þ ej ¼ F h

j þ djg þ ej;
ð30Þ

and that yields

dj ¼ 1
2
F h
j ð1Þ

h
� F h

j ð � 1Þ
i
;

ej ¼ 1
2
F h
j ð1Þ

h
þ F h

j ð � 1Þ
i
;

ð31Þ

X
cabr

1
b ¼ �cah

HU

2
;

saj ¼ 0:
ð32Þ

Calculation of these constants concludes the solution.

3. Binary mixtures

The simple case where the fluid comprises a solvent

and a single solute flowing between impervious walls is

presently examined. The writing of the field equations

depends upon the matrix C, and its inverse:

C ¼
c1 ch

cq 1

 !

and

C�1 ¼ 1

c1 � chcq

1 �ch

�cq c1

 !
;

ð33Þ

@2gv
1 ¼ 1� g2

c1 � cqch

½@xv
1 � ch@xH� � 1

Pe2
@2xv

1;

@2gH ¼ 1� g2

c1 � cqch

½�cq@xv
1 þ c1@xH� � 1

Pe2
@2xH:

ð34Þ

In the above equations and in what follows the

doubling of indices of the phenomenological coefficients

was omitted (c1 ¼ c11; cq ¼ cq1; ch ¼ c1h).
The asymptotic solutions are given for the tempera-

ture by Eq. (21) ½H1 ¼ HU 1
2
ðg þ 1Þ� and for the con-

centration equations (23) and (24) reduce to

r11 ¼ � ch

c1

HU

2
; s11 ¼ 1: ð35Þ

The complete solution is therefore

v1 ¼ 1�
ch

2c1
hUg þ

X
½F 1k þ r1kg�gk ; ð36Þ

H ¼ HUðxÞ ð1þ gÞ
2

þ
X

½F h
k þ dkg þ ek �gk ; ð37Þ

where the functions F 1 and F h satisfy the infinite set of

equations derived from (34),
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@2gF
1
k ¼ 1� g2

c1 � cqch

F 1k�1

�
þ A1kg þ B1k

� ch F h
k�1

�
þ Ah

k

1þ g
2

��
; ð38Þ

@2gF
h
k ¼ 1� g2

c1 � cqch

�
� cq F 1k�1

�
þ A1kg þ B1k

�
þ c1 F h

k�1

�
þ Ah

k

1þ g
2

��
: ð39Þ

The general aspect of the solutions obtained via a

Maple program, for sample values of the dimensionless

phenomenological constants, is presented in Figs. 2–8.

The temperature profile follows the wall temperature

with a steep rise around the origin. It approaches the

linear dependence with g as x ! 1, in accordance with
the asymptotic solution (21). The general aspect of the

evolution of the temperature profile is shown in Fig. 2.

As the limiting and wall temperatures are set indepen-

dently of all physical–chemical parameters, the temper-

ature profiles are quite insensitive to changes in the c; s.
In fact it is completely analogous to the temperature

profile in purely heat transfer problem.

A similar plot obtained with the same parameter

values gives the evolution of the concentration profile in

Fig. 3. This starts with a flat profile at �1, and the
solute migrates to the cold plate reaching the linear

profile predicted by Eq. (36). This behavior is a direct

consequence of the Soret effect, which produces a mass

flux from lower to higher solute concentration driven by

the temperature gradient. This effect is explored in

greater detail.

The concentration profile along the x-axis for various
values of position g is shown in Fig. 4 with its depen-
dence upon the Soret coefficient ch. This coefficient is

responsible for the terminal concentration distribution.

In fact, the concentration span of the single solvent as-

ymptotically approaches the limiting value

Dv1 ¼ v1jg¼1 � v1jg¼�1 ¼
ch

c1
: ð40Þ

For the stepping parameter for the wall temperature

S ¼ 1, the solution reaches the asymptotic value at

x � 1:5, or z=H � 1:5Pe. Larger values of S result in a
faster approach to the asymptotes. For S ¼ 2, the as-
ymptote is reached at x � 0:9, or z=H � 0:9Pe. Conver-
gence to a previously specified term of the order of 10�4

is slower requiring 34 terms as opposed to 6 in the
Fig. 2. Temperature surface for Pe ¼ 5, c1 ¼ 1, ch ¼ 0:3, cq ¼ 0,
and S ¼ 2.

Fig. 3. Concentration surface for Pe ¼ 5, c1 ¼ 1, ch ¼ 0:3,
cq ¼ 0, and S ¼ 2.

Fig. 4. Concentration profiles: sensitivity with respect to ch.
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previous case. The concentration profile is particularly

sensitive to the stepping parameter, and presents an in-

teresting phenomenon. Fig. 3 shows the concentration

profile of a plot as a function of x and g, for S ¼ 2. For
this value the solution presents in the four regions close

to the walls, and in the neighborhood of the stepping in

temperature, the concentration profile presents unusual

maxima and minima, which seem analogous to those

observed in Fourier transform methods. In many cases

these phenomena are persistent and insensitive to the

number of terms used in the expansion. This is shown in

Figs. 5 and 6, where the behavior of the solution is ac-

companied increasing the number of terms up to 50. The

dip below 1 just before the increase toward the asymp-

tote appears frequently and markedly. The concentra-

tion process is so fast requiring transport in the x

direction to have significant contribution. Analogous

maxima, or minima occur in regions shown in Fig. 3,

although not as persistently. A final comment on this

point is on the observation that the maxima and minima

occur at the boundaries, even though it has not estab-

lished the existence of a maximum principle for the set

of equations (34), or more generally Eqs. (13).

The Nusselt number shows a marked dependence on

the dimensionless phenomenological coefficients, espe-

cially on ch. Fig. 7 demonstrates this sensitivity showing

a plot of the Nusselt number based on the heat flux at

the upper wall versus position along the plate for di-

verse values of ch. In the absence of cross-effects the

Nusselt curve reproduces the purely heat transfer so-

lution.

A measure of the separation potential of the Soret–

Dufour effects is shown in Fig. 8, as the ratio of the

amounts of solute flowing through a plane at position x

in the lower to upper midsection. The enrichment thus

obtained is defined by

Fig. 5. Concentration profiles at upper and lower walls.

Fig. 6. Concentration profiles at upper and lower walls.

Fig. 7. Local Nusselt number for sample values of ch.

Fig. 8. Enrichment profile for sample values of ch.
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Enrichment ¼
R 0
�1 uðgÞvðx; gÞdgR 1
0
uðgÞvðx; gÞdg

: ð41Þ

This is shown in Fig. 8 for sample values of ch and

c1 ¼ 1. It is observed that the final enrichment is deter-
mined by ch=c1, and the approach to the asymptotic
values follows closely the stepping in wall temperature.

Enrichment can be as high as 20%, for ch=c1 ¼
ðkTDT=kÞ=Dc01 ¼ 0:5. Concentration systems based on
the division of the outlet into two equal streams will

double the inlet concentration in four steps of a stage-

wise purification system. The temperature difference

between the two walls and the initial concentration are

the operational variables available to obtain a high en-

ough value for the enrichment, as the remaining vari-

ables in ch=c1 are physical properties.

4. Concluding remarks

The solution of coupled heat and mass transfer in

convective processes between parallel plates utilizing bi-

orthogonality properties of special polynomials yields

accurate results. The interference at the level of con-

stitutive equations, as dictated by thermodynamics of

irreversible processes, does not present insurmountable

difficulties, opening space for the examination of more

complex problems, including possible new effects due to

the use of non-linear constitutive equations which can

show, e.g., interference of the velocity gradient upon the

heat and mass flux.

More complex geometries, such as the annular space

between cylindrical pipes and its association with per-

meable walls, can present interesting aspects related to

membrane technology.

The method can be applied to turbulent flows, in

which case hybrid (analytical/numerical) methods must

be applied.
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Appendix A

The function g0 is defined in Eq. (1), and the sequence
gn is obtained by its derivatives. This procedure yields a

sequence of functions with a common exponential factor

multiplying a polynomial QnðxÞ in x of increasing de-

grees. If pðxÞ is of the second degreeQnðxÞ is a polynomial
of degree n. A general procedure for the determination of
a set of polynomials, PmðxÞ, orthogonal to all but one of
the gk follows. Let

PmðxÞ ¼
Xm
q¼0

am
q x

q ðA:1Þ

be such thatZ 1

�1
PmðxÞgnðxÞdx ¼ dnm: ðA:2Þ

This condition is necessary and sufficient for the

unique determination of the coefficients am
q . To demon-

strate this it is noticed firstly that the integrals

Gqm 	
R1
�1 gqðxÞxm dx exist for all non-negative values of

m. Then multiplying (A.1) by each of the gk and inte-

grating, there follows:X
Gkqan

q ¼ dkn: ðA:3Þ

Solutions of the above set, for the coefficients an
q, give

the desired result, i.e. the coefficients of the polynomials

Pn.

A special case, utilized in the present work, starts

with the following value for

g0 ¼ expf�x2 þ xg: ðA:4Þ

The sequence of derivatives of this function yields a

sequence of Qk polynomials:

Q0 ¼ 1;
Q1 ¼ �2xþ 1;
Q2 ¼ 4x2 � 4x� 1;
Q3 ¼ �8x3 þ 12x2 þ 6x� 5;
Q4 ¼ 16x4 � 32x3 � 24x2 þ 40xþ 1:

ðA:5Þ

The solution of the set of linear equations yields the

polynomials with the bi-orthogonality property. The

first five are:

aP0 ¼ 1; a ¼
ffiffiffi
p

p
e1=4;

aP1 ¼
1

2
� x
1
;

aP2 ¼
x2

2
� x
2
þ 1
8
;

aP3 ¼ � x3

6
þ x2

4
þ x
8
þ 5

48
;

aP4 ¼
x4

24
� x3

12
� x2

16
þ 5x
48

þ 1

384
:

ðA:6Þ

A Maple program calculates the matrix G of an ar-

bitrary size, solves the system (A.3), and composes the

polynomials Pk .
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